

Outline

- Introduction
- Literature Review
- Methodology
- Data
- Preliminary Results
- Conclusions and Outline

WIFO

Introduction

Over the past year and a half: high inflation, particularly in the food industry

3 WIFO ■

Introduction

Over the past year and a half: high inflation, particularly in the food industry

Analyse the reactions of consumers to market changes

WIFO

4

Introduction

Over the past year and a half: high inflation, particularly in the food industry

Analyse the reactions of consumers to market changes

Estimate a demand system and demand elasticities

WIFO

5

Introduction

Over the past year and a half: high inflation, particularly in the food industry

Analyse the reactions of consumers to market changes

Estimate a demand system and demand elasticities

Use the linear approximation of the Exact Affine Stone Index (LA/EASI) demand system

WIFO

Review of methods used in food related studies

Paper	Country	Year	Model	Data
Castellón et al.	US	2002-2006	LA/EASI ² demand system	Food
Eisner et al.	Austria	2004/5, 2009/10, 2014/15	EASI ¹ demand system	All goods with focus on energy
Roosen et al.	Germany	2012-2014	LA/AIDS ⁴ demand system	Fresh meat
Widenhorn & Salhofer	Austria	1997-2009	Generalized demand system	All goods with focus on food and focus on milk and meat products
Wüger	Austria	1973-1984	LES ⁵ ; AIDS ³	Food

¹Exact Affine Stone Index (EASI) demand system

²Linear Approximation of Exact Affine Stone Index (LA/EASI) demand system ³Almost Ideal Demand System (AIDS)

⁴Linear Approximation of the Almost Ideal Demand System (LA/AIDS)

⁵Linear Expenditure System

WIFO

Methodology

Censored Linear Approximation of Exact Affine Stone Index (Censored LA/EASI)
Demand System (Lewbel & Pendakur, 2009)

$$w = \widehat{\Phi}\left(\sum_{r=0}^{R} b_r y^r + Cz + Dzy + Ap + Bpy\right) + \widehat{\phi}\delta + \varepsilon$$

with

w ... vector of budget shares of commodity groups (e.g. dairy)

y ... real total expenditures

z ... vector of observable household characteristics

p ... vector of logarithmic product prices

 ε ... vector of unobserved preference characteristics

 $\hat{\Phi}, \hat{\phi}$... matrices of probability information of censoring

WIFO

Methodology

Censored Linear Approximation of Exact Affine Stone Index (Censored LA/EASI) Demand System (Lewbel & Pendakur, 2009)

$$w = \widehat{\Phi}\left(\sum_{r=0}^{R} b_r y^r + Cz + Dzy + Ap + Bpy\right) + \widehat{\phi}\delta + \varepsilon$$

with

w ... vector of budget shares

High variability in the shape of Engel curves

y ... real total expenditures

 \emph{z} ... vector of observable household characteristics

 $p\,$... vector of logarithmic product prices

arepsilon ... vector of unobserved preference characteristics

 $\widehat{\Phi}$, $\widehat{\phi}$... matrices of probability information of censoring

b, parameters to be estimated

WIFO

9

Methodology

Censored Linear Approximation of Exact Affine Stone Index (Censored LA/EASI)
Demand System (Lewbel & Pendakur, 2009)

$$w = \widehat{\Phi}\left(\sum_{r=0}^{R} b_r y^r + Cz + Dzy + Ap + Bpy\right) + \widehat{\phi}\delta + \varepsilon$$

with

Unobserved preference heterogeneity

w ... vector of budget shares

y ... real total expenditures

z ... vector of observable household characteristics

p ... vector of logarithmic product prices

 ε ... vector of unobserved preference characteristics

 $\widehat{\Phi}$, $\widehat{\phi}$... matrices of probability information of censoring

WIFO

Methodology

Stone-Lewbel price indices (Lewbel, 1989) vli

To get more variation in the price data of commodity groups, construct

 $v_{li} = \frac{1}{k_i} \prod_{j=1}^{n_i} \left(\frac{p_{ij}}{w_{lij}} \right)^{w_{lij}}$ i ... food type j ... item in food type l ... household

with

 p_{ij} ... price of item j in food type i

 w_{lij} ... budget share of item j in food type i for household l

 k_i ... scaling factor

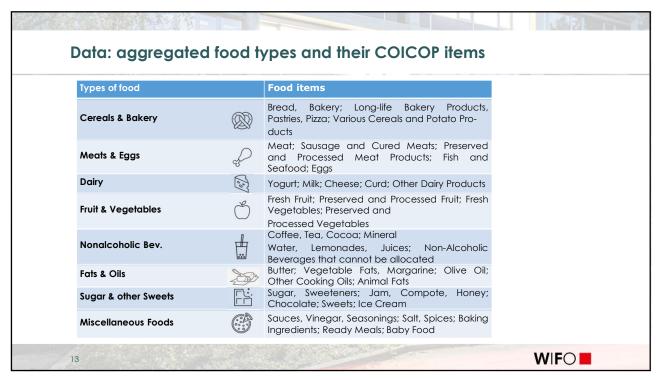
 n_i ... number of items in food type i

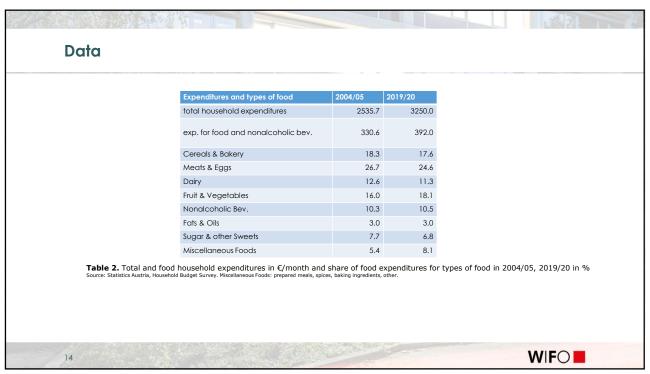
WIFO 11

11

Data

 $w = \widehat{\Phi}\left(\sum_{r=0}^R b_r y^r + Cz + Dzy + Ap + Bpy\right) + \widehat{\phi}\delta + \varepsilon$


Household Budget Survey (HBS; STAT):


- Includes data on budget shares w, real total expenditures y, household characteristics z
- Conducted in waves of five years by Statistics Austria
- samples from 2004/2005, 2009/2010, 2014/2015 and 2019/2020

Consumer Price Index (CPI; STAT):

- Includes data on price indices p (for X food items)
- frequency: monthly, yearly

WIFO

types of food	total expenditures group of households				
	lowest	low	high	highest	
Cereals & Bakery	-0.445	-0.480	-0.516	-0.538	A price increase of "Cereals & Bakery" of 1% results in decrea its quantity by 0.445% for the g of households in the lowest expenditure group
Meats & Eggs	-0.374	-0.420	-0.463	-0.486	
Dairy	-0.465	-0.495	-0.525	-0.548	
Fruit & Vegetables	-0.433	-0.469	-0.506	-0.528	
Nonalcoholic Bev.	-0.323	-0.337	-0.344	-0.375	
Fats & Oils	-0.487	-0.404	-0.349	-0.231	
Sugar & other Sweets	-0.494	-0.471	-0.464	-0.448	
Miscellaneous Foods	-0.755	-0.740	-0.722	-0.706	

types of food	total expenditures group o ouseholds				
	lowest	low	J h	highest	
Cereals & Bakery	-0.445	-0.480	-0.516	-0.538	
Neats & Eggs	-0.374	-0.420	-0.463	-0.486	
airy	-0.465	-0.495	-0.525	-0.548	
ruit & Vegetables	-0.433	-0.469	-0.506	-0.528	
lonalcoholic Bev.	-0.323	-0.337	-0.344	-0.375	
ats & Oils	-0.487	-0.404	-0.349	-0.231	
ugar & other Sweets	-0.494	-0.471	-0.464	-0.448	
Aiscellaneous Foods	-0.755	-0.740	-0.722	-0.706	Most elastic

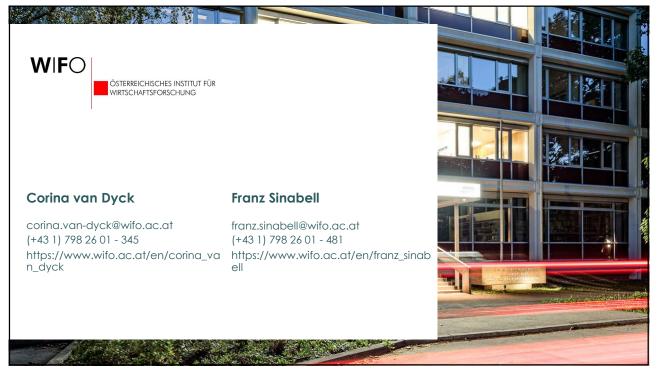
Conclusions and outlook

findings regarding results

Lower income households react less to price increases of "Cereals & Bakery", "Meats & Eggs", "Dairy", "Fruit & Vegetables" and "Nonalcoholic Beverages"

findings regarding estimation strategy

- we interpret our results as long-term elasticities
- comparing estimates of various waves may reveal change over time
- investigation of error terms may give hints on changing preferences


avenues for further research

- separate plant based products from animal based products
- separate "Beef & Veal" from "Meat & Eggs" and "Milk" from "Dairy"
- employ more elaborated approaches for handling censored data

17

WIFO

17

References

Castellón, C. E., Boonsaeng, T., and Carpio, C. E. (2015). Demand system estimation in the absence of price data: An application of Stone-Lewbel price indices. Applied Economics 47(6):553–568.

Eisner, A., Kulmer, V., and Kortschak, D. (2021). Distributional effects of carbon pricing when considering household heterogeneity: An EASI application for Austria. Energy Policy 156 112478.

Lewbel, A. (1989). Identification and Estimation of Equivalence Scales under Weak Separability. The Review of Economic Studies 56(2):311–316.

Lewbel, A., and Pendakur, K. (2009). Tricks with Hicks: The EASI Demand System. American Economic Review 99(3):827–863.

Roosen, J., Staudigel, M., and Rahbauer, S. (2022). Demand elasticities for fresh meat and welfare effects of meat taxes in Germany. Food Policy 106, 102194.

Widenhorn, A., and Salhofer, K. (2014). Using a Generalized Differenced Demand Model to Estimate Price and Expenditure Elasticities for Milk and Meat in Austria. German Journal of Agricultural Economics 63(2): 109–124.

19

WIFO

19

References

Wüger, M. (1989). Einkommens- und Preiselastizitäten für Nahrungsmittel in Österreich. Vergleich verschiedener Schätzansätze. WIFO Working Papers 28.

WIFO